Fibroblasts can be genetically modified to produce excitable cells capable of electrical coupling.

نویسندگان

  • Eddy Kizana
  • Samantha L Ginn
  • David G Allen
  • David L Ross
  • Ian E Alexander
چکیده

BACKGROUND Cardiac conduction occurs in an electrical syncytium of excitable cells connected by gap junctions. Disruption of these electrophysiological properties causes conduction slowing or block. Depending on the location of affected cells within the heart, this has the potential to result in clinical syndromes such as atrioventricular block. With a view to developing gene therapy strategies for repairing cardiac conduction defects, we sought to establish whether the phenotype of fibroblasts can be modified by gene transfer to produce cells capable of electrical excitation and coupling. METHODS AND RESULTS High-titer lentiviral vectors encoding MyoD, a myogenic transcription factor, and connexin43, a gap junction protein, were produced by established methods. Human dermal fibroblasts (HDFs) were efficiently (>80%) transduced at a multiplicity of infection of 50. HDFs transduced with the MyoD-encoding vector underwent myogenic conversion, as evidenced by myotube formation and detection of muscle-specific proteins. Importantly, calcium transients indicative of membrane excitability were observed in MyoD-induced myotubes after loading with a calcium-sensitive dye and electrical stimulation. Transients from adjacent myotubes displayed different excitation thresholds, indicating an absence of coupling between cells, consistent with skeletal muscle biology. In contrast, simultaneous transduction of HDFs with MyoD and connexin43-encoding vectors resulted in the appearance of transients in adjacent myotubes with identical thresholds, indicative of electrical coupling. Notably, dye transfer studies confirmed gap junctional intercellular communication. CONCLUSIONS Fibroblasts can be genetically modified to produce excitable cells capable of electrical coupling. These observations strengthen the prospect of developing gene-based strategies for repairing cardiac conduction defects.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

P96: Progress in the Treatment of Alzheimer’s Disease by Gene Therapy

Alzheimer’s disease (AD) is a progressive neurological disorder characterized by the aggregation of two proteins, amyloid-b and hyper phosphorylated tau, and by neuronal and synaptic loss. The progress of gene-modified cells and stem cells is a particularly promising therapeutic method for AD. Gene-Modified Cell-Based Therapy for AD prior to transplantation can be beneficial for increasin...

متن کامل

Inscribing Optical Excitability to Non-Excitable Cardiac Cells: Viral Delivery of Optogenetic Tools in Primary Cardiac Fibroblasts.

We describe in detail a method to introduce optogenetic actuation tools, a mutant version of channelrhodopsin-2, ChR2(H134R), and archaerhodopsin (ArchT), into primary cardiac fibroblasts (cFB) in vitro by adenoviral infection to yield quick, robust, and consistent expression. Instructions on adjusting infection parameters such as the multiplicity of infection and virus incubation duration are ...

متن کامل

Genetically Engineered Excitable Cardiac Myofibroblasts Coupled to Cardiomyocytes Rescue Normal Propagation and Reduce Arrhythmia Complexity in Heterocellular Monolayers

RATIONALE AND OBJECTIVE The use of genetic engineering of unexcitable cells to enable expression of gap junctions and inward rectifier potassium channels has suggested that cell therapies aimed at establishing electrical coupling of unexcitable donor cells to host cardiomyocytes may be arrhythmogenic. Whether similar considerations apply when the donor cells are electrically excitable has not b...

متن کامل

اثر مایع رویی کشت فیبروبلاست‌ها در تمایز سلول‌های قابل برنامه‌ریزی با منشای مونوسیت به سلول‌های تولیدکننده انسولین

Background: The characteristic of stem cells in self renewal and differentiation to different types of cells has stimulated the interests for using stem cells as a starting material for generating insulin secreting cells. We've evaluated the differentiation potential of Programmable cells of monocytic origin (PCMOs) into insulin producing cells effected from the growth factors and fibroblasts c...

متن کامل

OptoGap: an optogenetics-enabled assay for quantification of cell-cell coupling in multicellular cardiac tissue

Intercellular electrical coupling is an essential means of communication between cells. It is important to obtain quantitative knowledge of such coupling between cardiomyocytes and nonexcitable cells when, for example, pathological electrical coupling between myofibroblasts and cardiomyocytes yields increased arrhythmia risk or during the integration of donor (e.g. cardiac progenitor) cells wit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Circulation

دوره 111 4  شماره 

صفحات  -

تاریخ انتشار 2005